Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Классический метод математического описания и исследования многосвязных систем

Название: Классический метод математического описания и исследования многосвязных систем
Раздел: Рефераты по математике
Тип: реферат Добавлен 00:55:31 24 января 2009 Похожие работы
Просмотров: 52 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

КЛАССИЧЕСКИЙ МЕТОД

МАТЕМАТИЧЕСКОГО ОПИСАНИЯ И ИССЛЕДОВАНИЯ МНОГОСВЯЗНЫХ СИСТЕМ


1.1. ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ

Математическая модель линейной непрерывной многосвязной системы в физических переменных "вход-выход" при детерминированных воздействиях может быть представлена векторным дифференциальным уравнением в символическом виде [*]:

, (1.1.1)

где – вектор размерности n выходных координат системы; – вектор размерности m управляющих воздействий; – вектор размерности m1 возмущающих воздействий; , , - полиномные матрицы размерностей , , соответственно, элементы которых являются полиномами от р с постоянными коэффициентами (например , - линейная комбинация относительно выходной координаты yj и ее производных); - символическое обозначение производной; t – время. При этом предполагается существование соответствующих производных от y(t), u(t), r(t) по t и kL>kG, kL>kN, где через kL, kG, kN обозначены порядки старших производных полиномов от р в соответствующих матрицах L(p), G(p) и N(p).

Уравнение движения САУ составляется на основе ее структуры и математического описания, входящих в систему элементов, и имеет вид уравнения (1.1.1), где u(t)=z(t) и z(t) - вектор задающих воздействий на систему.

Уравнение движения САУ (1.1.1), записанное относительно у(t), называется уравнением автоматического управления (УАУ)

, (1.1.2)

где , - матричные передаточные функции по задающему z(t) и возмущающему r(t) каналам соответственно.

Для определения собственных движений системы (1.1.1), то есть когда u(t)=0 (или z(t)=0) и r(t)=0, и ее порядка необходимо записать характеристический определитель

, (1.1.3)

и найти корни λj характеристического уравнения

. (1.1.4)

Система будет устойчивой, если вещественная часть всех корней характеристического уравнения (нули функции ) будет неположительной.

Общее решение неоднородной системы линейных дифференциальных уравнений может быть представлено в виде суммы общего решения yo(t) однородной системы и частного решения уч(t) исходной неоднородной системы

, (i=1,…,n), (1.1.5)

где: Cij - коэффициенты, определяемые начальными условиями дифференциальных уравнений; q - степень характеристического уравнения.

1.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1.1.1

Построить сигнальный граф математической модели динамического режима САУ, записанной в переменных "вход–выход" в символической форме векторно-дифференциальным уравнением вида:

,, (1.2.1)

и определить характер свободного движения процесса по каналу “возмущающее воздействие r2 – выходная переменная y1“.

Решение

Сигнальный граф рассматриваемой САУ, в соответствии с уравнением (1.2.1) представлен на рис. 1.1.

Независимость выходных переменных yi в САУ определяется ее физическими свойствами и математически выражается в виде диагональности матрицы процесса L(p). На рис.1.1 независимость выходных переменных между собой отображается не связанностью вершин у1 и у2 сигнального графа, то есть независимостью уравнений между собой. Это позволяет решать уравнения независимо (отдельно) друг от друга.


y1

z1 r1

z2 r2

y2

Рис. 1.1. Сигнальный граф системы уравнений (1.2.1)

Для определения переходного процесса по каналу “возмущающее воздействие r2 – выходная переменная y1“ запишем его уравнение динамики

, (1.2.2)

которое представляет собой неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решение данного уравнения дается формулой (1.1.5) при j=2.

Для определения корней λ1,2 запишем характеристическое уравнение соответствующего однородного дифференциального уравнения

, (1.2.3)

и решая его, получим , .т. е. переходный процесс по рассматриваемому каналу является колебательным асимптотически сходящимся.

Задача 1.1.2

Математические модели динамических режимов управляемой и управляющей подсистем в переменных "вход–выход" в символической форме описываются векторно-дифференциальными уравнениями вида:

а) управляемая подсистема

,

, (1.2.12)

б) управляющая подсистема

, (1.2.13)

при нулевых начальных условиях, где yi(t), ui(t), ri(t), zi(t) – выходные, управляющие, возмущающие переменные и задающие воздействия соответственно.

Задание

1. Составить структурную схему многомерной САУ на основе принципа управления по отклонению и сформировать в ней отрицательные обратные связи.

2. Получить уравнение динамики многомерной САУ и ее характеристическое уравнение.

Решение

1.Структурная схема двумерной САУ с информационными каналами в подсистемах представлена на рис. 1.2. Настоящая схема синтезируется на основе принципа управления по отклонению и уравнений (1.2.12), (1,2.13).

При формировании отрицательных обратных связей в системе необходимо учитывать, что количество элементов обратного действия в контуре управления должно быть нечетным.

1.1. Контур управления выходным параметром у1(t).

Управляемая подсистема по каналу “” – элемент обратного действия. Рассогласование вводится в управляющее устройство в виде , то есть сумматор (элемент сравнения) является элементом обратного действия. Следовательно, канал управляющей подсистемы в рассматриваемом контуре должен содержать элемент обратного действия, поэтому элемент (р+1) матрицы должен быть со знаком минус [-(p+1)].


r1

r2

z1 u21 u11 y11

z2 u22 u12 y12


y22

y21

Рис. 1.2. Структурная схема двумерной САУ

1.2. Контур управления выходным параметром у2(t).

Управляемая подсистема по каналу “” – элемент прямого действия. Рассогласование вводится в управляющее устройство в виде , то есть сумматор (элемент сравнения) является элементом обратного действия. Следовательно, канал управляющей подсистемы в рассматриваемом контуре должен содержать элемент прямого действия.

2. Составление уравнения динамики многомерной САУ и определение ее характеристического уравнения.

Заданные уравнения (1.2.12), (1.2.13) в общем виде можно записать как

. (1.2.14)

Исключив из системы уравнений (1.2.14) промежуточную переменную u, получим

(1.2.15)

Перенося в левую часть уравнения многочлен от y(t) и оставляя в правой части многочлены от независимых переменных z(t), r(t) и учитывая, что , получим уравнение динамики

(1.2.16)

Характеристическое уравнение

. (1.2.17)

Задача 1.1.3

Математические модели динамических режимов управляемой и управляющей подсистем в переменных "вход–выход" описываются дифференциальными уравнениями вида:

а) управляемая подсистема

, (1.2.24)

при нулевых начальных условиях;

б) управляющая подсистема

, (1.2.25)

где yi(t), ui(t), ri(t), zi(t) – выходные, управляющие, возмущающие переменные и задающие воздействия соответственно.

Задание

1. Записать данные уравнения в символической форме и представить в векторно-дифференциальном виде;

Решение

Для записи данных уравнений в символическом виде необходимо обозначение производной заменить на символ р, то есть положить , а интеграл – на . После замены получим

а) управляемая подсистема

, (1.2.26)

б) управляющая подсистема

. (1.2.27)

Вводя векторы y(t)=[y1(t), y2(t)]T, u(t)=[u1(t), u2(t)]T, r(t)=[r1(t), r2(t)]T и учитывая, что

, (1.2.28)

получим следующие уравнения:

а) управляемая подсистема

,

. (1.2.29)

б) управляющая подсистема

, (1.2.30)

которые соответствуют уравнениям (1.2.12), (1.2.13) задачи 2.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:56:17 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:36:41 25 ноября 2015

Работы, похожие на Реферат: Классический метод математического описания и исследования многосвязных систем

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151098)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru