Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Деление произвольно заданного угла на 3 равновеликие части. Трисекция угла

Название: Деление произвольно заданного угла на 3 равновеликие части. Трисекция угла
Раздел: Рефераты по математике
Тип: статья Добавлен 09:07:32 04 марта 2010 Похожие работы
Просмотров: 165 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Деление произвольно заданного угла на 3 равновеликие части. Трисекция угла

Россия. г. Пенза

Е. И. Терёшкин.


Возьмем прямой угол BAD (чертеж1) достроим его да квадрата ABCD, примем сторону квадрата за 1. Продолжим стороны BC и DC до величины равной . Поставим точки M и N. Соединим точки M и N с точкой A и наш прямой угол BAD разделен на 3 равновеликие части т.е.

Чертеж 1.

Чертеж 2.


Но чтобы делить другие углы надо найти некоторую закономерность. Из точки C радиусом CM опишем окружность.

.

.

.

.

.

По теореме Пифагора находим . Из точки радиусом опишем окружность. Из точки через точку проводим линию до пересечения с большой дугой и ставим точку . , .

.

- диаметры большого круга. Проводим линию , она пересекает малый круг в точке . Из точки , через точку проводим линию до пересечения с большой дугой, ставим точку . Соединяем точки и .

.

.

Рассмотрим треугольник чертеж 2. . По теореме косинусов . Проведем линию до пересечения с .

По теореме Пифагора Из точки проводим линию . подобен , значит

Рассмотрим , т.к. этот угол вписанный и опирается на диаметр, а в этом треугольнике будет средняя линия, а значит По теореме косинусов , значит но , значит линия проходит через точку , т.е. через центр квадрата.

Далее чертим две пересекающиеся прямые, чтобы верхний и нижний вертикальные углы были тупыми (чертеж 3) и острыми (чертеж 4). В местах пересечения ставим точки . Из точек любым радиусом описываем окружность.


Чертеж 3. Чертеж 4.

Там где стороны верхнего тупого угла (чертеж 3) и острого ( чертеж 4) пересекаются с дугой окружности ставим точки M и N. Проводим биссектрисы обоих тупых углов ( чертеж 3) и острых углов ( чертеж 4). Там где биссектрисы пересекаются с окружностями ставим точки и . Из точек радиусом описываем окружности. Там где биссектрисы пересекаются с нижней точкой окружности ставим точки F. Соединяем точки N с точками F. В местах пересечений линий NF с малой окружностью ставим точки Е. Из точек через точки Е проводим линии до пересечения с большой дугой и ставим точки . Соединяем точки М с точками . В местах пересечений линий М и F ставим точки О. От точек О в сторону точек F по биссектрисам откладываем расстояние СО. Получаем точки А. Из точек А // МС проводим линии до пересечения с продолжениями линий CN и ставим точки В. Из точек А // ВС проводим линии до пересечения с продолжениями линий МС и ставим точки D. Соединяем точки М с точками А и точки N с точками А. Если требуется разделить начальные углы MCN на три равновеликие части, то из точек С направляя вверх проводим линии параллельные AM и AN.

Теперь в местах пересечения АМ и ВС ставим точки Р, а в местах пересечения AN и СD ставим точки Q. Соединяем точки М с точками N. В местах пересечения хорды MN с биссектрисой А ставим точку . Треугольники АМ и АN равны по двум катетам. Треугольники АРС и АСQ равны, т.к. а АС – общая. Следовательно в обоих чертежах РС=СQ, а ВР=QD и АР=АQ. Далее вынесем оба наших ромба АВСD в отдельные чертежи.

Чертеж 5.

На чертеж 5 (а, б) вынесены ромбы АВСD с тупыми и острыми углами как и на чертежах 3 и 4. Только вместо букв Р и Q применим буквы М и N. Из доказанного ранее известно, что это ромбы, т.е. АВ=ВС=СD=АD, ВМ=ND, и АМ=АN.

Из точек А, радиусом АВ проводим дуги ВD, Из точек М, радиусом ВМ проводим дуги ВF до пересечения с дугами ВD. Из точек N радиусом DN проводим дуги DЕ до пересечения с дугами ВD. Соединяем точки Е с точками N, а точки F с точками М. ВМ=МF=EN=DN. Соединяем точки А с точками Е и F. Проводим хорды BF и ЕD,

Фигуры АВМF состоят из двух равнобедренных треугольников АВF и ВМF имеющих общее основание BF. Значит линии АМ делят эти фигуры на два равных треугольника АВМ и АМF, треугольники равны по трем сторонам.

Фигуры АЕND состоят из двух равнобедренных треугольников АЕD и ЕND, имеющих общее основание ЕD. Значит линии АN делят эти фигуры на два равных треугольника АЕN и АND, треугольники равны по трем сторонам.

Треугольники АВМ равны треугольникам AND по трем сторонам, значит и треугольники АМF равны треугольникам АЕN. Следовательно в обоих чертежах , а и фигуры АВМF равны фигурам AEND каждая в своем чертеже. Но точки Е на линиях АМ могут находиться, а могут и не находиться и точки F на линиях АN могут находиться, а могут и не находиться.

Рассмотрим на обоих чертежах по два четырехугольника: ромбы АВСD и фигуры АЕND. Сумма углов у обоих одинакова. а значит или

В обоих чертежах равны фигурам АЕND.

.

В результате получается:

или

Рассмотрим в обоих чертежах фигуры АВМF и ромбы АВСD.

или

следовательно

или Но где находятся точки Е и F пока не известно.

Чертеж 6.

Чертеж 7.

На чертежах 6 (а, б) и 7 (а, б) указанны возможные варианты расположения точек Е и F относительно угла МАN.

Так как углы МАN симметричны относительно биссектрис ромбов АС, потому что, а , значит точки Е и F если и не находятся на линиях АМ и АN, то находятся на одинаковом расстоянии от этих линий. Иными словами и , если таковые углы существуют, то эти углы равны между собой. Если меньше то больше на 2 И наоборот если больше то меньше на 2

На чертеже 6 (а, б) рассмотрим (вместе равны фигуре АЕND) и ромб АВСD.

или

На чертеже 7 (а, б) рассмотрим и ромб АВСD.

Получится, что


Но и могут быть равны каким-либо углам, если .

Следовательно, наши углы NAF и EAM = 0, и точка Е находится на линии АМ, а точка F находится на линии AN и .

Угол больше развернутого этот способ не делит на три равновеликие части. Значит, его надо разделить пополам, любую из половинок разделить на три части и взять 2/3. Это и будет 1/3 делимого угла.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:17:52 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
14:23:03 25 ноября 2015

Работы, похожие на Статья: Деление произвольно заданного угла на 3 равновеликие части. Трисекция угла

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151201)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru