Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Бестрансформаторный усилитель мощности звуковых частот

Название: Бестрансформаторный усилитель мощности звуковых частот
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Добавлен 02:11:59 14 февраля 2008 Похожие работы
Просмотров: 2598 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

1) Введение

2) Исходные данные для проектирования

3) Общая теория и сведения

4) Расчет выходного каскада УМЗЧ

5) Расчет предоконечного каскада УМЗЧ

6) Расчет каскада предварительного усилителя

7) Расчет цепи отрицательной обратной связи

8) Расчет разделительных конденсаторов

9) Заключение о результатах проектирования

10) Список использованной литературы


1). Введение.

В данном курсовом проекте по дисциплине «Электронные цепи и приборы» производится расчет и выборка транзисторов для усилительного устройства, а также подвергнуть данное устройство детальной проработки.

В процессе выполнения курсового проекта необходимо составить принципиальную схему усилителя мощности звуковых частот (в ходе дальнейшего анализа - УМЗЧ), причем никаких ограничений на принципы ее построения и сложностей нет. Единственное условие – усилитель должен быть бестрансформаторным.

Используя приводимые расчетные соотношения и справочный материал , можно рассчитать несколько вариантов УМЗЧ без использования какой-либо другой литературы.

Выбор варианта задания на курсовое проектирование соответствует порядковому номеру студента в журнале группы.

Варианты задания на курсовое проектирование составлены в соответствии с требованиями ГОСТ.

При выполнении курсового проекта необходимо использовать справочную литературу, где приведены данные по основным параметрам резисторов, конденсаторов, диодов и транзисторов.

Среди возможных вариантов построения бестрансформаторных усилителей мощности наибольшее распространение получили усилители с использованием в двухтактном выходном каскаде эмиттерных повторителей на комплиментарных биполярных транзисторах (транзисторы структуры p-n-p и n-p-n с одинаковыми параметрами).

В различных модификациях усилителей используется дифференциальные каскады, операционные усилители. Наиболее высококачественные и мощные усилители работают от двух источников питания.


2) Исходные данные для проектирования

Выходная мощность (Вт) 6
Нижняя рабочая частота (Гц) 80
Верхняя рабочая частота (кГц) 8
Нестабильность напряжения на выходе (D%) 7
Сопротивление нагрузки (Ом) 16
Напряжение источника питания (В) 9
Внутреннее сопротивление источника сигнала (Rн , кОм) 3

3) Общая теория и сведения .

Входной сигнал подается на предоконечный усилитель (УС) и затем через цепь создания начального смещения (СМ) на выходные эмиттерные повторители, работающие в режиме класса АВ. При использовании комплементарных транзисторов отпадает нужда в фазоинверсном каскаде. Параметры элементов цепи смещения обычно термозависимы, т.е. сама цепь является частью схемы термокомпенсации тока покоя выходного каскада. Далее сигнал через элемент связи (ЭС) в виде переходного конденсатора (если используется один источник питания) или непосредственно (если используются два источника питания) подается на звукопроизводящее устройство.

УМЗЧ – это усилитель, в котором обычно используются непосредственные связи между каскадами и нагрузкой, а в некоторых случаях используется и емкостная связь с нагрузкой. Для обеспечения высокой стабильности работы выходного каскада и улучшения качественных показателей усилителя он весь охватывается цепью отрицательной обратной связи (ООС). По этой причине для обеспечения устойчивости усилителя число каскадов обычно не превышает двух-трех.

В реальном усилителе могут включаться различные цепи коррекции. Для ознакомления с такими схемотехническими решениями необходимо проработать приведенную литературу.

Промышленностью освоен выпуск УМЗЧ на мощности до 20-50 Вт в виде интегральных схем, на дискретных элементах, а также в виде смешанных конструкций. Наиболее высококачественные усилители выполняются на дискретных элементах, поскольку в таком варианте легче удается подобрать выходные транзисторы с близкими параметрами, обеспечить оптимальный режим работы каскадов и использовать транзисторы с заметно большей граничной частотой , чем транзисторы интегральных схем. Это, в свою очередь, позволяет применять и более глубокую ООС.

Существует несколько стандартных схемотехнических решений УМЗЧ. На рис.2 и рис.3 приведены две простейшие схемы усилителей мощности, имеющих один источник питания.

Транзистор VT1 (рис.2) включен по схеме с общим эмиттером (ОЭ). Каскад на основе VT1 охвачен местной последовательной ООС по току за счет падения напряжения сигнала на R4. Весь УМЗЧ, включая VT1, охвачен общей последовательной ООС по напряжению за счет R5, R4 и С1. Позднее будет показано, что сопротивление R5 много больше R4, а сопротивление С1 пренебрежимо мало. Коэффициент усиления каскада на VT1 незначителен, так как в каскаде действует ООС, а нагрузкой в основном является низкое входное сопротивление VT2.

Основное усиление обеспечивается за счет каскада на VT2, включенном по схеме с ОЭ. Его нагрузкой являются R7 и выходное сопротивление эмиттерного повторителя. За счет терморезистора R6 обеспечивается начальное смещение для эмиттерных повторителей (ЭП) на VT3 и VT4, которые поочередно работают почти от полного открывания до полного закрывания.

У ЭП коэффициент усиления по напряжению .

Поэтому с целью наиболее полного использования напряжения питания VT2 работает также в режиме от почти полного открывания до почти полного закрывания. Однако и при этом оконечные транзисторы VT3 и VT4 недоиспользуются по напряжению питания и отдаваемой мощности, что снижает коэффициент полезного действия (КПД) усилительного каскада.

На рис.2 условно показаны осциллограммы для переменной составляющей сигнала в отдельных точках анализируемой схемы. При поступлении первого положительного полупериода сигнала на VT3 и VT4 ток VT3 увеличивается, а ток VT4 уменьшается. Импульсный выходной ток VT3 (штрих-пунктир) проходит через С2 и сопротивление нагрузки . Конденсатор заряжается до напряжения Ео/2. Полярность указана на схеме. Во время второго отрицательного полупериода сигнала С2 разряжается через открытый транзистор VT4 и нагрузку импульсом тока ~.

Для наиболее полного использования напряжения источника питания в режиме покоя напряжение в точке А должно быть равным 0,5Ео. Его стабильность зависит от глубины общей ООС по постоянному току. Поэтому выход усилителя непосредственно соединяется с первым каскадом через R5.

Глубина ООС по переменному току определяется заданным коэффициентом усиления, коэффициентом нелинейных и частотных искажений, нестабильностью напряжения на выходе. Коэффициент передачи цепи ООС по переменному току задается подбором сопротивлений резисторов R4 и R5. В этом случае емкость конденсатора С1 должна выбираться такой, чтобы его сопротивление на нижней рабочей частоте было бы много меньше сопротивления R4.

Схема усилителя проста, но всегда имеет место спад амплитудно-частотной характеристики (АЧХ) в области нижних частот за счет С2 и есть некоторая асимметрия плеч выходного сигнала. Ток покоя VT4 несколько больше тока VT3. Через транзистор VT4 протекает и ток покоя VT1 (штриховая линия на рис.2). Еще один недостаток состоит в том, что расчетная величина сопротивления резистора R7 оказывается достаточно малой, поскольку она однозначно определяется режимами работы VT2, VT4 по постоянному току. Напряжение в точке В равно () = 0,5Ео, а ток покоя VT2 определяется амплитудой выходного тока ЭП и током, протекающим через R7. Амплитуды сигналов возбуждения VT3 и VT4 несколько отличны за счет падения напряжения сигнала на R7.

Несколько лучшими показателями отличается более сложный усилитель, схема которого представлена на рис.3. Принцип ее работы аналогичен. Остановимся лишь на отличиях.

Первое отличие состоит в том, что в качестве элемента схемы термокомпенсации тока покоя вместо терморезистора R6 (см. рис.2) используются диоды VD1 и VD2. Они крепятся непосредственно на радиатор одного из выходных транзисторов. При увеличении температуры диода его вольт-амперная характеристика (ВАХ) смещается влево примерно на уровень 2,2 мВ/°С (рис.4).

Рис.3

Токи покоя баз транзисторов VT4 и VT5 в несколько десятков раз меньше тока покоя коллектора VT3. Поэтому ток диода можно считать практически постоянным, величина которого определяется режимом работы транзистора VT3. В случае повышения температуры радиаторов транзисторов VT4 и VT5 падение напряжения ни диоде уменьшается (см.рис.4). Соответственно призакрываются выходные транзисторы. По причине схожести изменения ВАХ диода и входной характеристики транзистора последнее решение оказывается более эффективным, чем использование терморезистора.

Считается, что в первом каскаде используется дифференциальный каскад. Это не совсем так, хотя графическое сходство имеется. В данном случае проще полагать, что на эмиттер транзистора VT1 также, как и в схеме представленной на рис.2. Подается сигнал по цепи общей ООС, но через эмиттерный повторитель, собранный на VT2. т.е. в цепь ООС включен активный элемент. Ток покоя VT1 протекает через R4, а не через выходной транзистор. В этом случае улучшается симметрия плеч выходного каскада.

Рис.4

В различных модификациях усилителей используются дифференциальные каскады, операционные усилители и т.д. Конкретные схемные решения для таких усилителей будут рассмотрены в следующем разделе данного пособия.

Наиболее высококачественные и мощные усилители работают от двух источников питания. На рис.5 приведен фрагмент схемы выходного каскада такого класса. В режиме покоя через транзисторы протекает малый ток .

Поскольку точка С подсоединена к корпусу, то потенциал точки А относительно корпуса буден равен нулю. Постоянный ток через нагрузку не протекает. Таким образом нет необходимости в использовании какого-либо элемента связи между выходным каскадом и нагрузкой.

Расчет УМЗЧ


Принципиальная схема наиболее простого и часто применяемого бестрансформатор- ного УМЗЧ с одним источником питания приведена на рис.6 . Принцип ее работы и методика расчета описаны практически во всех учебниках. Однако следует обратить внимание на три обстоятельства. Существенный недостаток усилителя состоит в том, что ток покоя транзистора VT2, который может измеряться десятками миллиампер, протекает через нагрузку. Это не всегда допустимо. Второе замечание связано с описанием принципа действия каскада на основе транзистора VT2. В литературе можно встретить утверждение о том, что каскад на основе VT2 работает с использованием "вольт добавки". Необходимо сделать некоторые пояснения.

Рис.6

Выходной каскад - эмиттерный повторитель (ЭП) на комплементарных транзисторах VT3 и VT4 с параллельным возбуждением, работающий в режиме класса АВ. Его коэффициент усиления по напряжению близок к единице. Поэтому для обеспечения в нагрузке максимальной мощности в идеале на выходной каскад надо подавать сигнал с амплитудой 0,5Ео. Таким образом, транзистор VT2 должен предельно использоваться по напряжению от полного открывания () до полного запирания (режим отсечки), в режиме покоя потенциал его коллектора относительно корпуса равен - 0,5Ео. Реально это значение больше с учетом падения напряжения . Поэтому в цепь эмиттера нельзя включать резистор для стабилизации тока покоя.

Каскад на VT2 работает, в режиме класса А. Ток покоя VT2 должен быть заметно больше амплитуды базового тока выходных транзисторов. Если бы резистор R7 был подключен непосредственно к корпусу, то R7=0,5Ео/. Величина сопротивления R7 оказывается достаточно малой, т.е. коэффициент усиления каскада на VT2 также невелик.

В режиме покоя конденсатор С4 заряжен до напряжения 0,5Ео. Его емкость выбирается столь большой, что за период сигнала это напряжение практически не меняется. Тогда при полном открывании VT4 по отношению к VT2 ,VT3 и их нагрузкам С4 и Eо оказываются включенными последовательно, т.е. общее напряжение источника питания составляет порядка 1,5Ео. Таким образом удается увеличить амплитуду входного и, следовательно, выходного сигнала.

При отключении нагрузки для обеспечения возможности настройки усилителя ставится резистор R10 (R10 ~ 40 ).

Экономичный режим работы такого выходного каскада достигается за счет правильного выбора напряжения смещения. Часто приходится ставить резистор, изображенный на рис.6 пунктиром.

Более совершенная схема УМЗЧ, лишенная некоторых указанных выше недостатков, представлена на рис.7. Чувствительный элемент схемы термокомпенсации тока покоя выходного каскада выполнен в виде транзистора VT3, который размещается непосредственно на радиаторе выходного транзистора. При увеличении температуры происходит смещение его выходных характеристик и увеличение , вследствие чего падение напряжения на VT3 уменьшается, т.е. уменьшается смещение на выходных транзисторах. Эта схема термокомпенсации работает в несколько раз эффективнее чем при использовании одного диода (см. рис.6). С помощью переменного резистора R8 оказывается очень удобно устанавливать ток покоя оконечного каскада.

Нагрузкой транзистора VT2 теперь уже не является резистор, а генератор стабильного тока (ГСТ) на транзисторе VT4 с элементами термокомпенсации тока покоя в виде диодов VD1, VD2 и выходное сопротивление оконечного каскада. Сопротивление VТ4 для постоянного тока много меньше, чем для переменного. На рис.8 для примера приведено семейство выходных характеристик транзистора, на котором отмечена точка покоя при В, мА. Тогда внутреннее сопротивление VT4 для постоянного тока составит . Для переменного тока , где и – достаточно малые приращения напряжения и тока. В конкретном случае . В рассмотренном примере не учтен резистор R10. За счет него незначительно увеличивается сопротивление нагрузки VT4 по постоянному току и существенно по переменному. За счет R10 будет действовать местная ООС по току, существенно увеличивающая выходное сопротивление VT4, т.е. сопротивление нагрузки VT2.

Сопротивление резисторов R11 и R12 составляют десятые доли Ома. Они ставятся не только для некоторого симметрирования плеч выходного каскада за счет введения местной ООС, но и несколько ограничивают ток VT5, VT6 при перегрузке каскада.

Стабильность потенциала в точке соединения резисторов R11 и R12, равного 0,5Ео, увеличивается при охвате всего усилителя по постоянному току через резистор R6 ООС по напряжению (последовательная по входу). Глубина ООС по переменному току задается резисторами R5, R6.

Описанная схема УМЗЧ широко применяется в усилителях, работающих от одного источника питания. Можно предложить следующий примерный порядок ее расчета.

4) Расчет выходного каскада УМЗЧ

По заданным мощности в нагрузке Рн и сопротивлению нагрузки Rн и определяются амплитуды напряжения и тока:

Umn =2P н R н , Umn =2*6*16=13,856(В)

Imn = Umn / R н =13,856/16=0,866(А)

Сопротивление резисторов R э =R 11 +R 12 в цепи эмиттеров выбирается много меньше R н (иначе сильно падает КПД).

Пусть:

R э =0,05 R н , R э =0,05*16=0,8(Ом)

Рассчитывается напряжение источника питания :

Е0 ≥2[I (R э + R н )+1.5U нас ] , Е0 ≥2[0.866(0.8+16)+1.5*1.5] ≥ 33.5976

где U нас - напряжение насыщения транзистора , которое для кремниевых транзисторов составляет порядка 1В, а 1,5- коэффициент запаса.

Окончательно величина Е0 выбирается согласно ряду ГОСТа в сторону большего номинала.

Тогда напряжение покоя и рассеиваемая мощность на выходных транзисторах будут равны:

U к =0,5Е0 ; U к =0,5*33.5976=16.7988(В)

Рк =0,101 U 2 к / R н , Рк =0,101*(16.7988)2 /16=1,781(Вт)

Выбор транзистора производится при соблюдении следующих условий:

Рк max ≥1.3 Рк ; Рк max ≥1,3*1,781=2,3(Вт)

U КЭmax ≥1.2Е0 ; U КЭmax >=1.2*33,5976=40,3171(В)

IKmax ≥1.2 Imn ; IKmax ≥1.2*0,866=1,0392(А)

fh 21К ≈ fh 21Э ≥(3…5)f в ; fh 21К ≈ fh 21Э ≥ (24…40)

где Рк max ,U КЭmax ,IKmax , fh 21К иfh 21Э - соответственно предельная рассеиваемая на коллекторе мощность, предельные напряжения коллектор-эмиттер и ток коллектора , верхняя граничная частота транзистора в схеме включения с общим эмиттером и общим коллектором , а f в - верхняя рабочая частота сигнала.

Иногда в справочниках вместо частоты fh 21Э , указывается частота fh 21Б или f Т . fh 21Б - это предельная частота коэффициента передачи тока h 21Б в схеме с общей базой , т.е. частота на которой этот коэффициент уменьшается до уровня 0,7 по сравнению с областью нижних частот.

После того, как было произведено часть расчетов, происходит выборка транзистора по полученным параметрам, из выше приведенных формул. В моем случае подходит германиевый транзистор: ГТ403, для которого h 21Э =30.

Частота f Т - граничная частота транзистора в схеме с общим эмиттером при которой h 21Э = 1.

Взаимосвязь между названными частотами определяется с помощью следующих выражений:

fh 21Э * h 21Э ≈ fh 21Б ≈1,3 f Т ;

h 21Э =h 21Эmax *h 21Эmin ;

h 21Э – статический коэффициент передачи тока в схеме с ОЭ , h 21Эmax и h 21Эmin - справочные параметры : пределы технологического разброса.

В других случаях в справочниках указывается величина модуля коэффициента передачи тока на определенной частоте f .Тогда можно воспользоваться выражением:

f Т ≈│ h 21Э │* f .

При прочих равных условиях выходные транзисторы желательно выбирать с большим -h 21Э .

Максимально возможная отдаваемая в нагрузку мощность:

Рн. max =(U К -U нас )2 R н /(R н +R Э )2

Рн. max =(16,7988-1,5)2 *16/(16+0,8)2 =13,27(Вт)

Ток покоя окончательного каскада, ток покоя базы и амплитуда базового тока:

Ik 5 =0.05Imn ; Ik 5 =0.05*0,866=0,0433(А)

IB 5 =I кз /h 21Э ;

IBm 5 =1.1 Imn / h 21Э ; IBm 5 =1,1*0,866/30=0,031(А)

Коэффициент усиления и входное сопротивление оконечного каскада:

К3ЭН =(1+ h 21Э )R 11 /r 1 Б +(1+ h 21Э )(r э + R э +R н )

r 1 Б - можно пренебречь , R 11 = R э =0,8(Ом)

r э =0,026π / Imn =0,026*3,14/0,866=0,09(Ом)- среднее сопротивление эмиттера для транзистора , работающего в режиме класса В.

К3ЭН =(1+30)*0,8/(1+30)(0,09+0,8+16)=0,047

R вх.эп = r 1 Б +(1+ h 21Э )(r э + R э +R н )=523,59(Ом)

Амплитуда входного сигнала :

U мвв3 =U мн / К3 =13,856/0,047=294,8(В)

Расчет площади радиатора при необходимости производится согласно рекомендациям приведенными в следующих разделах.

5) Расчет предоконечного каскада УМЗЧ

Каскад на транзисторе VT2 в режиме класса А и его ток покоя должен превышать амплитуду базового тока выходного каскада:

Ik 2 =1,3IBm 5 =1,3*0,031=0,0403(А)

Рк2 =0,5 Ik 2 Е0 =0,5*0,0403*33,5976=0,6769(Вт)

Для предоконечного каскада желательно выбрать транзистор с возможно большим коэффициентом передачи по току, соблюдая условия

Рк max ≥1.3 Рк ; Рк max ≥1,3*1,781=2,3(Вт)

U КЭmax ≥1.2Е0 ; U КЭmax >=1.2*33,5976=40,3171(В)

IKmax ≥1.2 Imn ; IKmax ≥1.2*0,866=1,0392(А)

fh 21К ≈ fh 21Э ≥(3…5)f в ; fh 21К ≈ fh 21Э ≥ (24…40)

Вновь, после проведенного ряда расчетов, произвожу выборку транзисторов VT2 и VT4

и по полученным параметрам подходит транзистор ГТ402Д, h 21ЭVT 4 =30.

Входная емкость VT2 заметно шунтирует сопротивление нагрузки. С целью уменьшения искажений в области верхних частот следует:

fh 21Э ≥(50…100) f в

При прочих равных условиях для рассчитываемого каскада надо выбрать транзистор с меньшим выходным сопротивлением с целью уменьшения искажений в области верхних частот , возникающих из-за большой входной емкости выходного каскада.

В качестве термокомпенсирующего элемента используется транзистор VT3, работающий в режиме эмиттерного повторителя .Можно использовать маломощный транзистор с подходящими частотными свойствами и наибольшим значением параметра fh 21Э .Падение напряжения на нем составляет около 1В ,а рассеиваемая мощность не превышает долей милливатта .Для этих целей вполне подходит транзистор класса КТ3102.

Требование по частоте для транзисторов VT2 и VT3 аналогичны , но выходное сопротивление VT4 должно быть во много раз больше входного сопротивления выходного каскада. С этой целью вводится ООС путем включения резистора R10.Проще всего в качестве VT2 и VT4 выбирать комплементарную пару.

Прежде чем приступить к расчету параметров каскада на VT2 , необходимо определить сопротивление его нагрузки по переменному току. В первую очередь следует рассчитать выходное сопротивление транзистора VT4.

Для стабилизации тока покоя VT4 ток через R7 должен заметно превышать ток через его базу ,т.е.:

IR7 ≥(3…5) Ik2 / fh21 э vt4

R7 =U7 / I7 = Е 0 -2UvD / I7 =33,6-4,5/0,51=57(Ом )

В качестве термокомпенсирующих диодов можно использовать почти все кремневые диоды (у германиевых диодов разброс параметров гораздо больше).Например, можно выбрать КД503….КД510 , причем падение постоянного напряжения при включении их в прямом направлении составляет примерно 0,65 В при токах 1….5 мА. Тогда с учетом падения напряжения на переходе база-эмиттер VT4 можно принять:

UR 10 =2UvD - U БЭVT 4 =0,5(В)

R 10 = UR 10 / Ik 2 =0,5/0,04=12,5(Ом)

Рассматривая VT4 как усилительный прибор , включенный по схеме с разделенной нагрузкой , можно рассчитать коэффициент передачи ОС-В1 .

В1 = R 10 / RVT 4≈ , В1 =12,5/40,5=0,3

Коэффициент усиления без ООС:

Квх VT 4 = h 21Э R вхVT 4≈ / R вхVT 4 =30*40,5/64,64=18,8

R вхVT 4 = r 1 Б + r э (1+ h 21Э )=1,2+0,65(1+30)=64,64(Ом)

r э =0,026/ Ik 2 =0,026/0,0403=0,65(Ом)

r э - сопротивление эмиттера транзистора , работающего в режиме класса А.

Сопротивление базы r 1 Б рассчитываетсяпо справочным параметрам:

r 1 Б к к =1,2

где τ к - постоянная времени цепи обратной связи , а Ск – емкость коллекторного перехода.

С учетом ООС сопротивление переменному току для VT4 составит:

R выхООСVT 4 =R вых (1+ В1 КVT 4 )=150*103 (1+0,3*18,8)=996*103 (Ом)

Сопротивление нагрузки по переменному току для VT2 составит:

RVT 2 = R вхЭП R выхООСVT 4 / R вхЭП +R выхООСVT 4 =40,5*150*103 /40,5+150*103 =31,5(Ом)

Целесообразно выбрать ток делителя I Д2 , заметно меньшеIk 2, но

I Д2 ≥(3…5) I Б2 , I Д2 ≥0,3(А)

Как указывалось выше U КЭVT 3 ≈1В, тогда

R 8 + R 9 = U КЭVT 3 / I Д2 =1/0,3=3,3(Ом)

Для обеспечения возможности значительного изменения режима работы VT3 целесообразно выбрать

R 8 = (R 8 +R 9 )/3 и R 9 =2 (R 8 +R 9 )/3

Соответственно получим: R 8 =0,75(Ом),R 8 =1,5(Ом)

Входное сопротивление VT2 рассчитывается по формуле:

R вхVT 2 = r 1 Б + (1+ h 21Э )*0.026/ Ik 2 =1.2+(1+30)*0.026/0.04=20.9(Ом)

6) Расчет каскада предварительного усилителя.

Ток покоя VT1 выбирается согласно: R выхООСVT 4 =R вых (1+ В1 КVT 4 )

Если его величина измеряется долями миллиамперметра ,то следует принять Ik 1 =2…3мА При малых токах частотные свойства кремниевых транзисторов существенно ухудшаются

Тип транзистора выбирается аналогично VT2 .Подойдет любой маломощный транзистор с высоким значением коэффициента передачи по току , например КТ3102Б.

Для обеспечения необходимого тока покоя VT2 следует падать смещение U БЭ Ориентировочно можно принять :

U БЭ 0,7…0,9 В

Режим работы VT1 и VT2 обеспечивается подбора сопротивлений резисторов R 1 иR 2 .

Резистор R 6 частично шунтирует нагрузку усилителя. Следует выполнять условие

R 6 ≥100 R н , R 6 ≥100*16=1600(Ом)

Тогда можно рассчитать потенциал эмиттера VT1 ,ток базового делителя и составляющие его резисторы :

U ЭVT 1 =0,5 Е0 + Ik 2 R 6,0,5*33,6+2,3*10-3 *1600=20,48(В)

=10/30=0,3(А)

=2+0,7/0,3=9(Ом)

=(33,6-2-0,7)/0,3=103(Ом)

7) Расчет цепи отрицательной обратной связи.

В задании оговорена нестабильность напряжения на выходе каскада усилителя D,т.е. величина относительного изменения амплитуды сигнала при обрыве нагрузки

D=Rвых / Rн , где Rвых - выходное сопротивление усилителя.

Необходимо выполнить условие :

Выходное сопротивление эмиттерного повторителя :

.

При введенной ООС : 300/1+4=60(Ом)

Где К=К123 ООС - общий коэффициент усиления усилителя без ООС.

К1 =UКЭVT 1 / UБЭVT 1 =9/0,65=13,8

К2 = fh 21э / RвхVT 2 * Rвых =30/20,9*40,5=58,13

К3 ООС = К3 /1+β К3 =0,05/(1+4)*0,05=0,05

Из этого следует: К=13,8*58,13*0,05=39,3

Коэффициент передачи цепи ОС:

60-0,64/0,64*77.6=1,2

Rвых ОГ =60/1+1,239,3=1,2(Ом)

=1,2*1800/1+1,2=981,8(Ом)

Глубина общей ООС: =1+1,2*39,3=48,6

Если сопротивление резистора R 5 измеряется единицами Ом ,то следует увеличить R 6 или В2 .

Реальный коэффициент усиления усилителя

=39,3/50=0,786

С искажением АЧХ можно не считаться ,если выполняется условие:

=50/3,14*40*981,8=0,0004(Ф)

8) Расчет разделительных конденсаторов.

Остались нерассчитанными резисторы R 1 иR 2 и конденсатор С1 . Для этого недостаточно исходных данных.С целью увеличения входного сопротивления первого каскада можно выбрать:

=103/4=25,75(Ом), 2*103/4=51,5(Ом);

Для расчета С1 надо задаться коэффициентами фильтрации. Пусть Ф=10,тогда:

=(100-1)/2*3,14*100*25,75=4,05(Ф)

Где f н =100 - частота пульсаций (Гц).

9) Заключение о результатах проектирования.

В результате всех проделанных и проведенных расчетов были найдены транзисторы, на основе которых будет в следующих пунктах курсового проекта приведена принципиальная электрическая схема спроектированного усилителя с перечнем элементов согласно ГОСТу, а также печатная плата разработанного устройства.

Основной целью данной курсовой работы стало изучение методов расчёта мощных многокаскадных усилителей. В работе эта задача была успешно решена:

- Освоенные теоретические навыки позволяют на данном этапе обучения спроектировать несложные усилители мощности;

- Применение глубоких отрицательных обратных связей позволяет улучшить параметры усилителя до необходимой величины;

- Полученные в работе данные не сильно расходятся с полученными при макетировании и испытании подобных усилителей.

Можно также отметить, что практически достигнут требуемый коэффициент гармоник и коэффициент усиления. Некоторое расхождение появилось по двум причинам: в усилителе не были применены глубокие отрицательные обратные связи, выбранный режим не позволяет достичь требуемой величины коэффициента гармоник.

Выйти из сложившейся ситуации можно также двумя способами: применить ООС, либо сместить рабочую точку выходных транзисторов ближе к режиму А.

Каждый из этих способов обладает недостатками: используя первый – уменьшается коэффициент усиления, второй – увеличивается потребляемый в холостом ходу ток.

В зависимости от предъявляемых к радиоаппаратуре требований можно использовать любой метод. Однако не следует забывать о недостатках и учитывать их при проектировании усилителей.

10).Список использованной литературы

1. Андреев Ф.Ф. Электронные устройства автоматики. Москва, «Машиностроение», 1978г

2. Петухов В. М. Транзисторы и их зарубежные аналоги. Том 1, 2, Москва, «РадиоСофт», 2004г

3. Цыкина А.В. Усилители. Москва, «Связь», 1972 г

4. Лавриненко В.Ю. Справочник по полупроводниковым приборам. Киев, «Техника», 1984г

5. Гершунский Б.С. Справочник по расчету электронных схем. Киев, «Высшая школа», 1983г

6. Виноградов Ю.В. Основы электронной и полупроводниковой техники. Москва, «Энергия», 1972 г.

7. Цыкин Г.С.Усилительные устройства .-М.: Радио и связь ,1971. 368 с

8. Остапенко Г.С. Усилительные устройства .-М.:Радио и связь ,1989. 400 с

9. Войшивилло Г.В. Усилительные устройства .-М.: Радио и связь ,1983.264 с

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:06:15 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:47:00 25 ноября 2015

Работы, похожие на Курсовая работа: Бестрансформаторный усилитель мощности звуковых частот
Теория
Введение Умение решать сложные научно-технические задачи основная функция современного инженера электронной техники. Научиться решать такие задачи ...
При отсутствии на входе источников переменного сигнала режим, в котором находится транзистор, принято называть режимом покоя, а токи и напряжения параметрами покоя ( токи покоя ...
Обычное значение Uбэп = 0,7 В. Если пренебречь значением Uбэп, то станет ясно, что к резистору Rб1 прикладывается практически все напряжение источника Ек, следовательно этот ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат Просмотров: 2290 Комментариев: 8 Похожие работы
Оценило: 6 человек Средний балл: 2.2 Оценка: 2     Скачать
Электронные схемы для дома и быта
Простой логический пробник Простой логический пробник состоит из двух независимых пороговых устройств, одно из которых срабатывает при напряжении на ...
Максимальный ток нагрузки (до 120 мА) можно увеличить, если вместо транзистора МП16 (V5) установить П213, резисторы R1, R2 и R3 заменить соответственно на резисторы сопротивлением ...
На транзисторе VT4 собран усилитель для динамического микрофона, с резистора нагрузки (R6) которого усиленное напряжение через конденсатор С1 подается на базу транзистора VT2.
Раздел: Рефераты по коммуникации и связи
Тип: сочинение Просмотров: 37370 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 4 Оценка: неизвестно     Скачать
Усилитель мощности на дискретных элементах
Развитие усилителей неразрывно связано с появлением и совершенствованием усилительных элементов - сначала ламп, затем транзисторов, интегральных схем ...
В связи с тем, что выбрана гальваническая межкаскадная связь, то к коллекторному резистору предоконечного каскада будет прикладываться напряжение, равное Eп (т.к. необходимо задать ...
Применение данного вида ОС объясняется тем, что в качестве выходного каскада применяется двухтактный усилитель мощности с двуполярным питанием, в котором потенциал выхода в режиме ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат Просмотров: 4970 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Разработка фотоприемного устройства волоконно-оптической системы ...
Рис. 1.3 Блок схема измерения искажений ВОСПИ с одномодовым ВОК. Рис. 3.2 Принципиальная схема Ѭ, ѬѬ, ѬѬѬ каскадов ФПУ. Рис.4.4 Эквивалентная схема ...
Режим работы транзистора , определяемый положением исходной рабочей точки(точки покоя) на выходных характеристиках транзистора (рис.4.1.)т.е. значениями тока покоя коллектора Iк к ...
Нелинейные искажения усилителя определяется выходным каскадом, ко входу которого приложено наибольшее напряжение сигнала, точнее нелинейностью характеристик транзистора этого ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат Просмотров: 1185 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Разработка фотоприемного устройства волоконно-оптической системы ...
Реферат. Пояснительная записка дипломного проекта на тему: "Разработка фотоприемного устройства ВОСПИ диапазона ДЦВ." Содержит: 88 страниц 11 таблиц ...
Режим работы транзистора , определяемый положением исходной рабочей точки(точки покоя) на выходных характеристиках транзистора (рис.4.1.)т.е. значениями тока покоя коллектора Iк к ...
Нелинейные искажения усилителя определяется выходным каскадом, ко входу которого приложено наибольшее напряжение сигнала, точнее нелинейностью характеристик транзистора этого ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат Просмотров: 2385 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать
Моделирование схемы усилителя НЧ на МДП-транзисторах
Содержание 1. Задание 2. Технические характеристики усилителя НЧ 3. Теоретические сведенья 4. Описание схемы усилителя 4.1 Описание 4.2 Конструкция и ...
I, а-д. Для выявления наиболее целесообразного сочетания этих вариантов в двухтактном выходном каскаде воспользуемся соотношениями, связывающими их выходное напряжение UM с ...
Налаживание усилителя сводится к установке (подстроечным резистором R7) тока покоя транзисторов выходного каскада (В пределах 50 - 200 мА), при котором искажения типа ступенька ...
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Просмотров: 1200 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Моделирование и анализ электронных схем на ЭВМ
Министерство образования Российской Федерации Уральский государственный технический университет - УПИ Кафедра РЭИС УМЗЧ для автомобильного ...
Принципиальная схема усилителя приведена в приложении 1. Он состоит из фазоинверторного каскада на транзисторе VT1 и двухканального усилителя мощности на ОУ DA1,DA2 и транзисторах ...
По виду выходного напряжения и тока видно, что сигнал подаваемый на вход проходит через усилитель без искажений.
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Просмотров: 293 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Усилитель мощности звуковой частоты
Московский ордена Ленина, ордена Октябрьской Революции и ордена Трудового Красного Знамени Государственный Технический Университет имени Н.Э. Баумана ...
... амплитудно-частотной и фазо-частотной характеристик от температуры и параметра регулировочного элемента (резистора, определяющего ток покоя транзисторов выходного каскада) ...
При исправных деталях налаживание усилителя сводится к установке тока покоя каждого из выходных транзисторов в пределах 60..
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Просмотров: 2517 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Разработка блока управления фотоприёмником для волоконно-оптических ...
Введение В современных системах связи все больше требуются скоростные широкополосные каналы связи для передачи информации. Отвечать растущим объемам ...
Режим работы транзистора, определяемый положением исходной рабочей точки (точки покоя) на выходных характеристиках транзистора (рисунок 4.1), т.е. значениями тока покоя коллектора ...
где U2(p) - напряжение на выходе фотоприемного устройства; U1(p) - напряжение на нагрузке ФД т.е. на комплексном сопротивлении по переменному току, действующему между базой ...
Раздел: Рефераты по коммуникации и связи
Тип: дипломная работа Просмотров: 316 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Курсовая работа: Бестрансформаторный усилитель мощности звуковых частот (1993)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150024)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru