Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Факторизация в численных методах интегрирования вырожденных эллиптических уравнений ионосферной плазмы

Название: Факторизация в численных методах интегрирования вырожденных эллиптических уравнений ионосферной плазмы
Раздел: Рефераты по медицине
Тип: статья Добавлен 00:07:56 13 апреля 2010 Похожие работы
Просмотров: 36 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Н.М. Кащенко

1. Численный метод интегрирования вырожденных эллиптических уравнений

В предположении обычных при моделировании ионосферы приближениях малости инерционных сил для заряженной составляющей плазмы и квазипотенциальности силовых линий магнитного поля Земли уравнения переноса заряженных частиц имеют вид [3]:

(1)

В этих уравнениях ni — концентрация частиц, qi — источники и потери, — матрица коэффициентов диффузии, имеющая только продольные компоненты, — скорость переноса частиц. Аналогичный вид имеют уравнения теплопроводности.

Часто удобно решать уравнения таких моделей конечно-разностным методом на прямоугольных сетках в сферической системе координат. При этом возникает проблема решения вырожденных эллиптических уравнений со смешанными производными. Разностная аппроксимация таких уравнений приводит к разностным схемам, для которых не выполнено условие монотонности даже при аппроксимации в терминах потоков. Запись этих уравнений в дипольной системе координат после аппроксимации по переменной t приводит к уравнениям вида:

(-Au¢+ Bu)¢+ Cu = D, A > 0, C 0, D 0. (2)

Здесь дифференцирование проводится по продольной координате, которую обозначим b.

Для решения таких уравнений предлагается в (2) факторизовать дифференциальный оператор (дифференциальная прогонка), затем факторизованную запись преобразовать в сферическую систему координат и решать факторизованные уравнения в этой системе по схеме бегущего счета. После факторизации уравнения (2) получаем систему

(3)

Здесь e и z являются вспомогательными функциями. Первое и второе уравнения интегрируются в направлении возрастания b, а третье интегрируется в направлении убывания b. Систему (3) можно решать на прямоугольной сетке исходной системы координат, используя соответствующие разностные аппроксимации и схемы бегущего счета.

Пусть (x, y) — исходная система координат, а (a, b) — новая система и пусть для формул перехода справедливо соотношение:

Тогда поэтому и аппроксимируются разностями назад при n> 0 и разностями вперед при n< 0, а — разностями в обратном порядке. Аналогичные аппроксимации применяются и для производных по переменной y. Тогда суммарная погрешность аппроксимации имеет вид Dz + (ADu)¢- uDe - eDu, где Dz, Du, De — погрешности аппроксимаций в уравнениях для z, u и e соответственно.

В зависимости от аппроксимации недифференциальных членов системы (3) получается семейство разностных схем с разными величинами суммарной погрешности аппроксимации. Параметры семейства следует подбирать для получения нужного свойства разностной схемы, например, для получения аппроксимации второго порядка. В ионосферных моделях для дополнительного уменьшения погрешностей аппроксимации область интегрирования делится пополам и применяется встречная дифференциальная прогонка с условиями гладкости решения на границе деления [3]. Описанная схема реализована на языке программирования Fortran в рамках численной модели ионосферы.

2. Некоторые варианты скалярной прогонки

Решение трехточечных разностных уравнений методом прогонки основано на неявной факторизации соответствующего разностного оператора. В [2] рассмотрены некоторые варианты решения трехточечных разностных уравнений, но, как указано в [1], анализ вычислительной устойчивости проведен не полностью. В работе [1] показано, что классическая запись прогонки даже при диагональном преобладании имеет погрешность порядка O(n3), и там же приведены примеры, показывающие, что при количестве узлов порядка 300 и использовании обычной точности могут получаться большие погрешности (десятки процентов и более). Там же указаны способы уменьшения этих погрешностей, в частности, с помощью преобразования прогонки к безразностному виду.

Рассмотрим некоторые варианты прогонок без разностей. В этом случае, как указано в [1], погрешности округлений накапливаются со скоростью не более чем O(n2), а при некоторых условиях на коэффициенты — O(n). Приведем несколько вариантов безразностных прогонок.

1. B = 0. Этот случай рассмотрен в [1], а разностная схема для (2) имеет вид:

ai > 0, bi 0, ci > 0, di 0.

В этих уравнениях выполнено условие диагонального преобладания.

Прямой ход прогонки:

При этом 0 < ei < 1.

Обратный ход прогонки:

Здесь

Следовательно, формулы обратного хода можно записать в безразностном виде:

Кроме уменьшения порядка роста погрешностей этот вариант прогонки доказывает однозначную разрешимость соответствующих разностных уравнений.

2. B ¹ 0. В этом случае разностная схема имеет вид:

ai > 0, bi 0, ci > 0, di 0.

В этих уравнениях условие диагонального преобладания в общем случае не выполнено.

Прямой ход прогонки:

При этом 0 < ei < 1.

Обратный ход прогонки:

Здесь

Следовательно, формулы обратного хода можно записать в безразностном виде:

Как и в предыдущем случае, кроме уменьшения порядка роста погрешностей этот вариант прогонки доказывает однозначную разрешимость соответствующих разностных уравнений.

3. Циклический случай с B = 0. Разностные уравнения имеют вид:

ai > 0, bi 0, ci > 0, di 0,

Прямой ход прогонки:

Вспомогательный ход прогонки:

Вычисление Yn:

В этих формулах величины ri, si, ui соответствуют уравнениям:

Обратный ход прогонки:

В этом варианте прогонки также отсутствуют разности, что, как и в предыдущих случаях, кроме уменьшения порядка роста погрешностей доказывает однозначную разрешимость соответствующих разностных уравнений.

Список литературы

1. Ильин В.П. Прямой анализ устойчивости метода прогонки // Актуальные проблемы вычислительной математики и математического программирования. Новосибирск: Наука, Сибирское отделение, 1985. С. 189—201

2. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978. 519 с.

3. Кащенко Н.М., Захаров В.Е. Численный метод интегрирования системы уравнений переноса ионосферной плазмы // Доклады международного математического семинара. Калининград: Издательство КГУ, 2002. С. 287—290

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:42:03 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:10:23 25 ноября 2015

Работы, похожие на Статья: Факторизация в численных методах интегрирования вырожденных эллиптических уравнений ионосферной плазмы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151048)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru