Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Геометрические свойства регулярного круглого конуса в пространстве

Название: Геометрические свойства регулярного круглого конуса в пространстве
Раздел: Рефераты по математике
Тип: статья Добавлен 01:27:01 11 сентября 2009 Похожие работы
Просмотров: 480 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Асп. Коробова К. В.

Кафедра математического анализа.

Северо-Осетинский государственный университет

Приведены явные формулы для вычисления множеств положительных и отрицательных частей произвольного элемента в пространстве , упорядоченном круглым регулярным конусом. Определено множество элементов, на котором реализуется минимум в формуле расстояния от элемента до конуса, и исследуется вопрос о совпадении этого множества с множеством положительных частей элемента.

Введение

Теория конусов является актуальным разделом функционального анализа и находит большое применение во многих областях математики. Геометрическим свойствам пространств, упорядоченных конусами различного вида, посвящены работы Л. В. Канторовича, Б. 3. Вулиха [1,2], М. А. Красносельского [3], В. Т. Худалова [4,5]. В работе автора [6] дано общее описание регулярного круглого конуса в пространстве и описаны некоторые его свойства. Данная статья посвящена дальнейшему исследованию порядковых свойств пространства .

1. Предварительные сведения

Приведем необходимые для дальнейшего использования определения и результаты.

1.1. Пусть Е – банахово пространство над полем действительных чисел R, Е+ – конус в Е. Конус Е+ называется регулярным, если выполнены следующие условия:

±х ≤ у Þ ||х|| ≤ ||y|| для любых х, у Î Е,

для любого х Î Е и любого e > 0 существует у Î Е+ такой, что ±х ≤ у и ||у|| ≤ (1+e) ||х||.

Регулярный конус Е+ называется строго регулярным, если выполнено условие (2) при e = 0, т. е.

(2') для любого х Î Е существует у Î Е+ такой, что ±х ≤ у и ||y|| = ||х||.

Упорядоченное замкнутым строго регулярным конусом Е+ пространство Е обозначают (Е, Е+) Î (Â), см. [1,2].

1.2. Одним из наиболее общих методов построения конуса в произвольном банаховом пространстве, обладающего свойствами нормальности, несплющенности, а также другими свойствами, является следующий: пусть X – банахово пространство, f Î X* – произвольный непрерывный линейный функционал на X такой, что ||f|| = 1. Для любого aÎ (0,1] определим K(f,α):={xÎX: f(x) ≥ a||х||}.

Если Н – гильбертово пространство над R, то для любого aÎН, ||a|| = 1, конус К(а, a) имеет вид:

K(a, α) = {x Î X : (a, x) ≥ a ||x||}.

Если dim H > 1, то для любого а Î Н, ||a|| = 1, конус К (а, a) строго регулярен в Н тогда и только тогда, когда a = [5].

1.3. Отметим, что класс регулярных конусов в пространствах и l1 совпадает с классом строго регулярных конусов [5]. Данная работа опирается на следующее описание всех регулярных круглых конусов, полученных в [4].

Теорема. Конус K(f, a) является регулярным , n > l1 только при двух значениях aÎ (0,1]:

при a = 1 каждая координата вектора f = (f1, f2,..., fn) равна +1 или – 1; при этом имеется 2n конусов, порождающих упорядоченные банаховы пространства, порядково изоморфные и линейно изометричные пространству с естественным конусом положительных элементов;

при a = 0,5 одна из координат (j-я координата) вектора f = (f1, f2,..., fn) равна ±1, а все остальные – нули; при этом имеется 2n конусов, порождающих упорядоченные банаховы пространства, порядково изоморфные и линейно изометричные пространству с конусом

Kj = {х = (x1,x2,...,xn) : xj ≥ }. (1)

1.4. Пусть (Е, Е+) Î (Â). Для любого х Î Е обозначим через |Х| множество элементов у Î Е таких, что ± x ≤ у и ||x|| = ||y||. Любой элемент этого множества называется метрическим модулем элемента x.

Положим

X+ = ½ x + ½|X|, X− = −½ x + ½|X| .

Множества Х+ и Х− называются множествами положительных (соответственно отрицательных) частей элемента x. Если у Î |Х|, т.е. ±x ≤ у и ||у|| = ||x||, то положим x+ = (у + x)/2, x− = (у – x)/2, |x| = x+ + x−. Из определения следует, что |x| ≥ ± x, причем

x = x+ − x−, |x| = x+ + x−, ||x+ - x−|| = ||x+ + x−||, ||x|| = |||x|||.

1.5. Конус Е+ в упорядоченном банаховом пространстве (Е, Е+) Î (Â) называется достижимым, если для любого x Î Е существует элемент Рх Î Е+, на котором реализуется минимум в формуле расстояния от х до Е+, т. е.

d(x, E+) = inf{||а – x|| : a Î E+} = ||Рx – x||.

Множество всех таких Рх обозначается М(х).

1.6. При вычислении расстояния от точки до конуса воспользуемся следующим результатом из [5].

Пусть (Е, Е+) Î (Â) и х Î Е+. Элемент x+ Î Е+ является ближайшим к х элементом конуса Е+ тогда и только тогда, когда существует f Î Е*+, ||f|| = 1, такой, что f(x+) = 0, f(x-) = ||x-||. В этом случае d(x, Е+) = ||x-||.

1.7. Пусть E – банахово пространство над R со строго регулярным замкнутым конусом Е+. Элементы x, у Î Е+ называются н-дизъюнктными или ортогональными по Роберу (обозначается x у), если ||x + λу|| = ||x – λу|| для любого λ ≥ 0.

2. Описание множеств |Х|, Х+, Х-

Рассмотрим пространство , упорядоченное регулярным круглым конусом K(f,a), где a = 0,5 и функционал f имеет первую координату, равную единице, а остальные координаты нулевые:

K1 = {x = (x1, x2, ..., xn) : x1 ≥ |x2| + … + |xn|}.

Все результаты легко перенести на общий случай (1) с помощью изометричного преобразования. В дальнейшем, если не указано иное, будем обозначать через X = .

Опишем множества |Х|, Х+, Х- для произвольного элемента x = (x1, ..., xn) Î. Заметим, что частный случай разложения элемента х на ортогональные по Роберу положительную и отрицательную части рассмотрен в [6].

2.1. Пусть x1 = 0. Найдем элемент конуса, который мажорирует элементы ± х и равен им по норме, т. е. у = (у1, …, yn) : y1 ≥ , y ≥ ± х, ||y|| = ||x||. Такой элемент описывает следующая система:

Сложив первые два неравенства, получим оценку у1 ≥ X. С другой стороны, из третьего равенства видно, что у1 ≤ X. Тогда у1 = X, = 0, следовательно yk = 0 для любого . Получаем следующее представление метрического модуля элемента х и его положительной и отрицательной части

,

,

.

2.2. Пусть x1 > 0. В этом случае система, описывающая элемент у Î |Х|, имеет вид:

Аналогичные действия позволяют утверждать, что X≤у1≤X + х1, т.е. у1 представим в виде у1 = X + λх1, где 0 ≤ λ ≤ 1. Последовательно подставляя значение у1 в систему, имеем: -|yk – xk|) ≥ ≥ х1(l – λ) = , с другой стороны, |уk| = |xk + (yk – xk)| ≥ ≥ |xk| – |yk – xk|. В итоге получаем:

|xk| = |yk| + |yk − xk| ().

Из этого равенства следует, что уk и хk – yk – одного знака, что приводит к следующим выводам:

если (xk − yk) > 0 и yk > 0, то 0 < yk < xk ;

если (xk − yk) < 0 и yk < 0, то xk < yk < 0;

если (хк – yk) = 0 и yk = 0, то хk = уk = 0.

Из чего следует, что каждая координата уk () представима в виде уk = λkхk, 0 ≤ λk ≤ 1.

Отметим равенство, используемое в дальнейшем:

.

Итак, при x1 > 0 имеем:

где , 0 ≤ λ, λk ≤ 1};

где , 0 ≤ λ, λk ≤ 1};

где , 0 ≤ λ, λk ≤ 1}.

2.3. Пусть x1 < 0. Система, описывающая элемент у Î |Х|, на этот раз имеет вид:

Выполнив аналогичные пункту 2.2 действия, получим X ≤ у1 ≤ X – х1. В этом случае y1 = Х + λ|x1|, где 0 ≤ λ ≤ 1. Подставляя последовательно значение у1 в систему, получаем

и .

Откуда выводим:

|xk| = |yk| + |yk + xk| ().

Отсюда следует, что – yk и (xk + yk) – одного знака. Вновь получаем, что уk = –λkxk , 0≤λk≤1. При этом == .

Итак, при х1 < 0 имеем:

где , 0 ≤ λ, λk ≤ 1};

где , 0 ≤ λ, λk ≤ 1};

где , 0 ≤ λ, λk ≤ 1}.

2.4. Общий случай. Для произвольного элемента х = (x1, ..., xn) и круглого регулярного конуса Kj (1) имеем:

где , 0 ≤ λ, λk ≤ 1};

где , 0 ≤ λ, λk ≤ 1};

где , 0 ≤ λ, λk ≤ 1};

2 Труды молодых ученых, 2005 (1)
где .

3. Нахождение расстояния от элемента до конуса

Пусть элемент x принадлежит конусу К1, т.е. х1 ≥ X. В этом случае d(x, K1) = 0, а ближайшим элементом конуса является он сам.

Пусть элемент х принадлежит конусу – К1, т.е. -х1 ≥ X. В этом случае очевидно d(x, K1) = ||х||, а ближайшим элементом конуса является ноль.

Пусть х1 = 0 и элемент х не принадлежит конусу ±К1. Покажем, что d(x, K1) = ||х–||, а ближайшим элементом конуса является х+. Согласно следствию 2.2.13 [5], для этого необходимо найти функционал f Î К*1 такой, что ||f|| = 1, f(x+) = 0, f(x-) = ||x-||,

где x+ – x- = x, ||x+ + x-|| = ||x||.

В качестве такого функционала выберем f=(1, –sgn x2, ...,–sgn xn). Для любого элемента конуса аÎК1 справедливо f(а)=a1 –, т. е. f положительный функционал. Очевидно, что его норма равна единице. Элементы x+ и x–, вычисляемые по формулам 2.1, удовлетворяют условиям следствия 2.2.14 [5]. Кроме того,

,

.

Учитывая, что ||x–|| = || (Х, x2, ... , хn)|| = X, имеем, что f(x-) = =||x-||. Таким образом, условия следствия 2.2.14 [5] выполняются полностью, и мы приходим к выводу, что

d(x, K1) = || x-|| = =X, а x+ является ближайшим к х элементом конуса.

3.4. Пусть X > х1 > 0. Положив λ = 0 в формулах 2.2, получим:

) .

В этом случае очевидно, что x+ – x- = x, || x+ + x-|| = ||x||.

Рассматривая функционал из 3.3, находим:

,

.

Заметим, что в этих рассуждениях использован результат, полученный в 2.2, о том, что .

В итоге получаем, что d(x, K1) = ||x-|| = , a x+ является ближайшим к x элементом конуса.

3.5. Пусть х1 < 0 и – х1 > X. Если λ = 0 в формулах 2.3, то элементы

)

удовлетворяют условиям x+ – x- = x и ||x+ + x-|| = ||x||, причем f(x+) = 0, f(x-) = ||x-||, где f – функционал из 3.3.

Таким образом, в этом случае d(x, K1) = ||x-|| = , a x+ – ближайший к x элемент конуса.

Аналогичные рассуждения показывают, что данные результаты справедливы и для конуса Kj.

3.6. Данные рассуждения подтверждают результат утверждения 2.3 из [6] о том, что

4. Описание множества М(х)

Элемент x принадлежит конусу К1. В этом случае расстояние d(x, K1) = ||x–|| = 0. Если а = (a1, ..., аn) Î М(x), то а Î К1 и ||а – x|| = 0, откуда следует, что а = x и M(x) = {x}.

Элемент х принадлежит конусу –К1. В этом случае x1 ≤ –X и расстояние

d(x, К1) = ||x||. Если a = (a1, ..., аn) Î М(x), то a1 = A и ||a – x|| = ||x||, что равносильно |а1 – x1| + = –x1 + +. Откуда следует, что а1 = - =A.

Получаем, что ≥ ≥ .

Равенство | xk – аk| + |аk| = |xk| для любого означает, что аk и (xk – аk) – одного знака, т. е. аk = ak xk, где 0 ≤ ak ≤ 1 для любого . Выражение для а1 имеет вид: а1 = .

В итоге получаем, что

где 0≤ak≤1,}.

4.3. x1 = 0 и элемент х не принадлежит конусу К1. Пусть а = (a1, ..., an) Î М(x). Из определения М(х) следует, что a1 ≥ А и ||а – x|| = = + |a1| = . Из последних равенств получаем: а1 = или следующую цепочку = + +. Это равносильно + + = . В итоге вновь получаем равенство

|xk −ak| + |ak| = |xk| (),

которое равносильно утверждению, что

где 0≤ak≤1, }.

4.4. Пусть x1 > 0 и элемент x не принадлежит конусу K1. Если а = (a1, ..., аn) Î М(x), то ||a – x|| = ||x–|| = d(x, К1) = – x1

или

Так как a Î K1 , то а1 ≥ . Тогда последовательно получаем a1 ≤ |а1 – x1| + x1 = - ≤ a1 , что равносильно системе

или

Получаем, что (аk – xk) и xk – одного знака, т. е. аk = akxk, где 0 ≤ ak ≤ 1 для любого . Подставив в (*), имеем а1 + = .

Таким образом, выражение для а1 имеет вид: а1 =.

В итоге получаем, что если х1 > 0, то

где 0≤ak≤ 1, }.

4.5. Пусть x1 < 0 и элемент х не принадлежит конусу –К1, т.е. –x1 < .

Если а = (a1, ..., аn) Î М(x), то ||a-x|| = ||x–|| = d(x, К1) =–x1

или

или

Откуда a1= - . В то же время + . Из последнего неравенства получаем, что (ak – xk) и (xk) – одного знака для любого k, т. е. аk = ak xk, где 0 ≤ ak ≤ 1 для любого . Тогда a1= =. Получаем, что (4.4) верно и для этого случая.

5. Описание множества M(x)∩K1

Интересен вопрос о взаимоотношении множества положительных частей элемента и множества элементов, на которых достигается расстояние от элемента до конуса.

Пусть элемент x принадлежит конусу К1. В этом случае М(х) = {x}, а Х+ = {(Х + x1(1 + λ), x2(1 + λ2), ..., xn(1 + λn)), 0 ≤ λ, λk ≤ 1, = x1(1 – λ)}. При λk = 1 получим λ = 0 и Х+ = {x}, т.е. М(х) ∩ Х+ = {x} и М(х) Ì Х+.

Пусть элемент x принадлежит конусу –К1. Если аÎ М(x)∩Х+, то, учитывая формулы 4.2 и 2.2, получим:

(+ x1(1 – λ), x2(1 – λ2), ... , xn(1 – λn)).

Из этого равенства следует, что ) при λk Î[0,1]. Итак, для любого λk, найдется такое, что из того, что а Î Х+ следует, что а Î М(х). Обратное не всегда верно. В итоге получаем включение М(x) ∩ Х+ = X+ .

5.3. Пусть x1 = 0 и элемент x не принадлежит конусу. Воспользовавшись формулами 4.3 и 2.1, получим М(х) ∩ Х+ = Х+.

5.4. Пусть x1 > 0 и элемент x не принадлежит конусу. Если элемент принадлежит М(х) ∩ Х+ , то выполняется равенство:

(+ x1(1 + λ), x2(1 + λ2), ..., xn(1 + λn)),

что равносильно системе

Данные равенства выполняются, если λk такие, что λ = 0. В этом случае , т.е.

М(x)∩Х+=.

5.5. Пусть x1 < 0 и элемент х не принадлежит конусу –К1. Если элемент принадлежит М(х) ∩ Х+ ,то выполняется равенство:

(+ x1(1 - λ), x2(1 - λ2), ..., xn(1 - λn)),

что равносильно системе

Данные равенства выполняются, если ], т. е. М(x) ∩ Х+ = М(х).

Список литературы

Вулих Б. 3. Введение в теорию конусов в нормированных пространствах. Калинин.: Изд-во КГУ, 1977.

Вулих Б. 3. Специальные вопросы геометрии конусов в нормированных пространствах. Калинин.: Изд-во КГУ, 1978.

Красносельский М. А. Положительные решения операторных уравнений. М.: Физматгиз. 1962.

Вишняков Ю. Г., Худалов В. Т. Описание всех регулярных круглых конусов в . Вестник СОГУ. Естественные науки. 1999. № 1.

Худалов В. Т. Упорядоченные банаховы пространства и их приложения. Владикавказ: Иристон, 1999.

Коробова К. В. О геометрии регулярных круглых конусов в пространствах и l1.–Владикавказский мат. журн. 2003. Т. 5, № 3.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:25:23 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:02:48 25 ноября 2015

Работы, похожие на Статья: Геометрические свойства регулярного круглого конуса в пространстве

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150317)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru