Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками

Название: Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками
Раздел: Рефераты по математике
Тип: статья Добавлен 23:25:01 10 сентября 2009 Похожие работы
Просмотров: 77 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками

Кодзодков А.Х.

Кафедра математического анализа.

Кабардино-Балкарский государственный университет

Рассмотрим линейное нагруженное уравнение третьего порядка:

(1)

в – области , ограниченной отрезками прямых соответственно при и характеристиками , уравнения (1) при ; ; – интервал , – интервал .

Здесь положено, что:

1)

или 2) .

Пусть имеет место случай (1).

Задача . Найти функцию со следующими свойствами: 1) ;

2) – регулярное решение уравнения (1) при ;

3) удовлетворяет краевым условиям

, ; (2)

,

, (3)

где , – аффиксы точек пересечения характеристик уравнения (1) при y < 0, выходящих из точки с характеристиками АС и ВС соответственно; , , .

Опираясь на однозначную разрешимость задачи Коши для уравнения (1) при y < 0 с начальными данными , , легко видеть, что если существует решение задачи , то оно представимо в виде:

. (4)

Учитывая (4) в краевом условии (3), получаем:

, (5)

где .

Следуя [1], обозначим через первообразную функции . Тогда уравнение (5) примет вид:

, (6)

, (7)

где .

Относительно коэффициентов уравнения (6) будем рассматривать аналогичные ситуации, приведенные в работе [1]:

1) , т.е. ;

2) , , т.е. ;

3), т.е. ;

4) , , т.е. .

Пусть имеет место случай (1) и функции . Решение задачи (6), (7) в этом случае имеет вид:

, (8)

где .

Дифференцируя равенство (8) и делая несложные преобразования, получаем:

(9)

где ,

, ,

,

, .

Переходя к пределу в уравнении (1) при , получаем функциональное соотношение между и , принесенное из области , на линию :

. (10)

В силу граничных условий (2) и равенства (9) получим нелокальную задачу для нагруженного неоднородного интегро-дифференциального уравнения третьего порядка с переменными коэффициентами:

, (11)

, (12)

где

.

В начале положим, что , т.е.

, , т.е.

.

В зависимости от значений корней характеристического уравнения

, (13)

соответствующего однородному уравнению (11) (), будем исследовать разрешимость задачи (11), (12).

Введем обозначение . Логически возможны три различных случая: 1) S>0, 2) S=0, 3) S<0.

Известно, что [2]: 1) если S>0, то уравнение (13) имеет только один действительный корень, а два остальных корня будут сопряженными чисто комплексными числами; 2) если S=0, то все три корня уравнения (13) действительны, причем два из них равны; 3) если S<0, то все три корня уравнения (13) действительны, причем все они различны.

Пусть S=0, т.е. .

Общее решение уравнения (11) в этом случае имеет вид:

, (14)

где ,

.

Удовлетворяя (14) граничным условиям (12), получим линейную алгебраическую систему трех уравнений относительно с определителем:

.

Положим, что . Тогда находят по формулам:

, (15)

, (16)

, (17)

где

,

,

,

,

,

,

,

,

,

,

,

,

.

Учитывая (15) – (17) в (14), получаем:

,

где ,

,

,

или

, (18)

где .

Если считать функцию известной, то (18) представляет собой интегральное уравнение Фредгольма второго рода с вырожденным ядром относительно . Обозначив

,

решение уравнения (18) будем искать в виде:

. (19)

После подстановки (19) в (18) имеем выражение:

.

Если , то определяется по формуле:

. (20)

Учитывая (19), (20) в (18), получаем:

, (21)

где ,

.

В равенстве (21) учтем значение . В результате будем иметь:

, (22)

где ,

,

,

,

,

.

Перепишем уравнение (22) в виде:

, (23)

где .

В силу условий, наложенных на заданные функции , можем заключить, что , следовательно .

Обращая интегральное уравнение Вольтерра второго рода (23), получаем:

, (24)

где – резольвента ядра . Заметим, что резольвента обладает такими же свойствами, что и ядро [3].

Заменяя в равенстве (24) функцию ее значением, получаем:

, (25)

где ,

.

Перепишем уравнение (25) в виде:

, (26)

где .

Решение уравнения (26) будем искать в виде:

, (27)

где .

Поступая аналогично предыдущему случаю, получим

, если .

Таким образом, имеем:

3 Труды молодых ученых № 3, 2007
, (28)

где .

Уравнение (28) перепишем в виде:

, (29)

где .

Решение уравнения (29) ищем в виде:

, (30)

где .

Подберем теперь постоянную так, чтобы определенная формулой (30) функция была решением интегрального уравнения (29). С этой целью внесем выражение (30) для в левую часть (29). После простых вычислений получаем:

,

откуда

,

где положено, что

.

Таким образом, имеем:

. (31)

Полагая в равенстве , находим

,

если , т.е.

.

Пусть теперь имеет место случай 2), причем :

.

В этом случае уравнение (6) принимает вид:

, (32)

где .

Учитывая условие (7), из (32) получаем соотношение , . Подставляя это значение в (32), находим

. (33)

Подставляя (33) в (10), получаем нагруженное уравнение:

, (34)

где ,

,

,

с внутренне-краевыми условиями (12).

Рассмотрим частный случай, когда , т.е.

=; , т.е.

; , т.е.

.

Тогда общее решение однородного уравнения

имеет вид [4]:

где .

Пусть . Методом вариации постоянных находим общее решение неоднородного уравнения (34) в виде:

, (35)

где ,

.

Удовлетворяя (35) условиям (12), получаем:

,

,

где

,

,

, причем выполняется условие

, т.е. .

Равенство (35) перепишем в виде:

, (36)

где , .

Из (36) при , имеем

,

если выполняется условие , т.е.

.

Пусть имеет место случай 3), причем , . Тогда уравнение (6) принимает вид [1]:

. (37)

Полагая в равенстве (37) и, учитывая условия , получим:

.

Следовательно, для имеем представление

, (38)

где .

Если выполняется условие 4) и функции , причем , то имеем равенство

. (39)

Полагая в равенстве (39) и, учитывая условие , находим

.

Таким образом, имеем, что

. (40)

Полагая в равенствах (38), (40) , найдем , а затем, подставляя их в равенство (10), однозначно найдем неизвестную функцию .

Случай исследуется аналогично.

После определения функций решение задачи в области задается формулой (4), а в области приходим к задаче (1), (2), .

Решение этой задачи дается формулой [5]:

, (41)

где

.

Отсюда, полагая в равенстве (41) , получаем систему интегральных уравнений типа Вольтерра второго рода:

(42)

где ,

.

В силу свойств функции и ядер системы (42), нетрудно убедиться, что система уравнений (42) допускает единственное решение в пространстве [3].

Список литературы

Наджафов Х.М. Об одной общей краевой задаче со смещением для уравнения Лаврентьева-Бицадзе // Известия КБНЦ РАН. Нальчик, №1(8), 2002.

Фадеев Д.К. Лекции по алгебре. М.1984.

Мюнтц Г. Интегральные уравнения. Л.-М., Т.1, 1934.

Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1971.

Джураев Т.Б. Краевые задачи для уравнений смешанного и смешанно-составного типов. Ташкент: Фан, 1979.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:24:46 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:02:12 25 ноября 2015
Азамат, помоги мне, дай этот материал...
Андемиркан 20:28:33 22 мая 2010

Работы, похожие на Статья: Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151456)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru