Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Шпаргалка: Множественная регрессия и корреляция

Название: Множественная регрессия и корреляция
Раздел: Рефераты по математике
Тип: шпаргалка Добавлен 20:47:02 18 июня 2009 Похожие работы
Просмотров: 17518 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Справочный материал к теме:

Множественная регрессия – уравнение связи с несколькими независимыми переменными:

где - зависимая переменная (результативный признак);

- независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще используются следующие функции:

линейная –

степенная –

экспонента –

гипербола - .

Можно использовать и другие функции, приводимые к линейному виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:

Для ее решения может быть применен метод определителей:

, ,…, ,

где - определитель системы;

- частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид уравнения множественной регрессии – уравнение регрессии в стандартизированном масштабе:

где - стандартизированные переменные;

- стандартизированные коэффициенты регрессии.

К уравнению множественной регрессии в стандартизированном масштабе применим МНК. Стандартизированные коэффициенты регрессии (- коэффициенты) определяются из следующей системы уравнений:

.

Связь коэффициентов множественной регрессии со стандартизированными коэффициентами описывается соотношением

Параметр определяется как .

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле

Для расчета частных коэффициентов эластичности применяется следующая формула:

.

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции:

Значение индекса множественной корреляции лежит в пределах от 0 до 1 и должно быть больше или равно максимальному парному индексу корреляции:

Индекс множественной корреляции для уравнения в стандартизированном масштабе можно записать в виде

При линейной зависимости коэффициент множественной корреляции можно определить через матрицу парных коэффициентов корреляции:

---- определитель матрицы парных коэффициентов корреляции;

------ определитель матрицы межфакторной корреляции.

Частные коэффициенты (или индексы) корреляции, измеряющие влияние на y фактора при неизменном уровне других факторов, можно определить по формуле:

или по рекуррентной формуле:

.

Частные коэффициенты корреляции изменяются в пределах от –1 до 1.

Качество построенной модели в целом оценивает коэффициент (индекс) детерминации. Коэффициент множественной детерминации рассчитывается как квадрат индекса множественной корреляции:

Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле:

где n-число наблюдений;

m – число факторов.

Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:

Частный F-критерий оценивает статистическую значимость присутствия каждого факторов в уравнении. В общем виде для фактора частный F-критерий определится как

Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Стьюдента сводится к вычислению значения

где - средняя квадратичная ошибка коэффициента регрессии она может быть определена по следующей формуле:

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов, их тесной линейной связанности.

Считается, что две переменные явно коллинеарны, т. е. находятся между собой в линейной зависимости, если

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы были бы равны нулю. Так, для включающего три объясняющих переменных уравнения

матрица коэффициентов корреляции между факторами имела бы определитель, равный 1:

так как и .

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0:

.

Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Проверка мультиколлинеарности факторов может быть проведена методом испытания гипотезы о независимости переменных . Доказано, что величина имеет приближенное распределение с степенями свободы. Если фактическое значение превосходит табличное (критическое) , то гипотеза отклоняется. Это означает, что , недиагональные ненулевые коэффициенты корреляции указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.

Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие не соблюдается, то имеет место гетероскедастичность.

При нарушении гомоскедастичности мы имеем неравенства

При малом объеме выборки для оценки гетероскедастичности может использоваться метод Гольдфельда-Квандта. Основная идея теста Гольдфельда-Квандта состоит в следующем:

1) упорядочение наблюдений по мере возрастания переменной ;

2) исключение из рассмотрения центральных наблюдений; при этом

-число оцениваемых параметров;

3) разделение совокупности из наблюдений на две группы (соответственно с малыми и с большими значениями фактора ) и определение по каждой из групп уравнений регрессии;

4)определение остаточной суммы квадратов для первой и второй групп и нахождение их отношения: .

При выполнении нулевой гипотезы о гомоскедастичности отношение R будет удовлетворять F-критерию со степенями свободы для каждой остаточной суммы квадратов. Чем больше величина R превышает табличное значение F-критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

Уравнения множественной регрессии могут включать в качестве независимых переменных качественные признаки (например, профессия, пол, образование, климатические условия, отдельные регионы и т. д.). Чтобы ввести такие переменные в регрессионную модель, их необходимо упорядочить и присвоить им те или иные значения, т. е. качественные переменные преобразовать в количественные.

Такого вида сконструированные переменные принято в эконометрике называть фиктивными переменными. Например, включать в модель фактор «пол» в виде фиктивной переменной можно в следующем виде:

Коэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории (женский пол) к другой (мужской пол) при неизменных значениях остальных параметров. На основе t-критерия Стьюдента делается вывод о значимости влияния фиктивной переменной, существенности расхождения между категориями.

Типовая задача № 1

По 30 территориям России имеются данные, представленные в табл. 1.

Таблица 1

Признак Среднее значение Среднее квадратическое отклонение Линейный коэффициент парной корреляции

Среднедневной душевой доход,

руб., y

86,8 11,44 -
Среднедневная заработная плата одного работающего, руб., x1 54,9 5,86

Средний возраст безработного,

лет, x2

33,5 0,58

Требуется:

1. Построить уравнение множественной регрессии в стандартизованной и естественной форме; рассчитать частные коэффициенты эластичности, сравнить их с b1 и b2 , пояснить различия между ними.

2. Рассчитать линейные коэффициенты частной корреляции и коэффициент множественной корреляции, сравнить их с линейными коэффициентами парной корреляции, пояснить различия между ними.

3. Рассчитать общий и частные F-критерии Фишера.

Решение

1. Линейное уравнение множественной регрессии y от х1 и х2 имеет вид: . Для расчета его параметров применим метод стандартизации переменных и построим искомое уравнение в стандартизованном масштабе: .

Расчет b-коэффициентов выполним по формулам

Получим уравнение:

Для построения уравнения в естественной форме рассчитаем и , используя формулы для перехода от к :

Значение определим из соотношения

Для характеристики относительной силы влияния и на рассчитаем средние коэффициенты эластичности:

С увеличением средней заработной платы на 1% от ее среднего уровня средний душевой доход возрастает на 1,02% от своего среднего уровня; при повышении среднего возраста безработного на 1% среднедушевой доход снижается на 0,87% от своего среднего уровня. Очевидно, что сила влияния средней заработной платы на средний душевой доход оказалась больше, чем сила влияния среднего возраста безработного . К аналогичным выводам о силе связи приходим при сравнении модулей значений и :

.

Различия в силе влияния фактора на результат, полученные при сравнении и , объясняются тем, что коэффициент эластичности исходит из соотношения средних: а -коэффициент - из соотношения средних квадратических отклонений:.

2. Линейные коэффициенты частной корреляции здесь рассчитываются по рекуррентной формуле:

;

;

.

Если сравнить значения коэффициентов парной и частной корреляции, то приходим к выводу, что из-за слабой межфакторной связи коэффициенты парной и частной корреляции отличаются незначительно: выводы о тесноте и направлении связи на основе коэффициентов парной и частной корреляции совпадают:

.

Расчет линейного коэффициента множественной корреляции выполним с использованием коэффициентов и :

.

Зависимость от и характеризуется как тесная, в которой 72% вариации среднего душевого дохода определяются вариацией учтенных в модели факторов: средней заработной платы и среднего возраста безработного. Прочие факторы, не включенные в модель, составляют соответственно 28% от общей вариации .

3. Общий -критерий проверяет гипотезу о статистической значимости уравнения регрессии и показателя тесноты связи ():

Сравнивая и , приходим к выводу о необходимости отклонить гипотизу , так как С вероятностью делаем заключение о статистической значимости уравнения в целом и показателя тесноты связи которые сформировали под неслучайным воздействием факторов и .

Частные -критерии - и оценивают статистическую значимость присутствия факторов и в уравнении множественной регрессии, оценивают целесообразность включения в уравнение одного фактора после другого фактора, т.е. оценивает целесообразность включения в уравнение фактора после того, как в него был включен фактор . Соответственно указывает на целесообразность включения в модель фактора после фактора :

=

Сравнивая и приходим к выводу о целесообразности включения в модель фактора после фактора , так как . Гипотезу о несущественности прироста за счёт включения дополнительного фактора отклоняем и приходим к выводу о статистически подтвержденной целесообразности включения фактора после фактора .

Целесообразность включения в модель фактора после фактора проверяет :

=

Низкое значение свидетельствует о статистической незначимости прироста за счёт включения в модель фактора (средний возраст безработного). Это означает, что парная регрессионная модель зависимости среднего дохода от средней заработной платы является достаточно статистически значимой, надёжной и что нет необходимости улучшать её, включая дополнительный фактор (средний возраст безработного).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:20:55 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
12:58:18 25 ноября 2015

Работы, похожие на Шпаргалка: Множественная регрессия и корреляция
Билеты на государственный аттестационный экзамен по специальности ...
1 Кибернетический подход к информационной системе как системе управления. Понятие кибернетической системы связано с процессами управления и ...
Сама регрессия бывает парная (зависимость между 1-им фактор признаком и результатом) и множественная.
y = a + bx (2)(парная линейная регрессия, т.к. х и у участвуют в 1-ой степени, а и b - параметры регрессии имеющие экономический смысл).
Раздел: Рефераты по информатике, программированию
Тип: реферат Просмотров: 1451 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать
Расчет показателей эконометрики
Содержание Задача 1 Решение Задача 2 Решение Задача 3 Решение Задача 4 Решение Задача 5 Решение Список используемой литературы Приложение Задача 1 По ...
где m- число факторных признаков в уравнении регрессии; R - линейный коэффициент множественной корреляции.
В соответствии с достаточным условием идентификации определитель матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, не должен быть равен нулю, а ранг ...
Раздел: Рефераты по экономико-математическому моделированию
Тип: контрольная работа Просмотров: 2060 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Анализ финансовых результатов на примере магазина
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ _ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ Факультет Кафедра ...
Множественная корреляция и регрессия определяют форму связи переменных, выявляют тесноту их связи и устанавливают влияние отдельных факторов.
Парный коэффициент корреляции является показателем тесноты связи лишь в случае линейной зависимости между переменными и обладает следующими основными свойствами:
Раздел: Рефераты по экономике
Тип: реферат Просмотров: 1772 Комментариев: 3 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Определители матрицы и системы линейных алгебраических уравнений
Реферат по дисциплине: "Математика" на тему: "Определители матрицы и системы линейных алгебраических уравнений" Основные определения Определение ...
Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.
Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений.
Раздел: Рефераты по математике
Тип: реферат Просмотров: 7112 Комментариев: 4 Похожие работы
Оценило: 3 человек Средний балл: 3.3 Оценка: неизвестно     Скачать
Теоретические основы математических и инструментальных методов ...
Теоретические основы специальности. Оптимизационные методы решения экономических задач. Классическая постановка задачи оптимизации. Оптимизация ...
По мере возрастания сложности после статистического анализа, который касается поведения отдельных переменных, идет линейная регрессия с двумя переменными (парная регрессия).
Коэффициент корреляции определяет тесноту линейной корреляционной связи между двумя случайными переменными x и y. Однако корреляционная связь между переменными не обязательно ...
Раздел: Рефераты по экономико-математическому моделированию
Тип: реферат Просмотров: 1714 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Составление и решение уравнений линейной регрессии
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ...
3) модели парной регрессии зависимости объема выпуска продукции от объема капиталовложений: фактические и модельные значения точки прогноза.
Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, первое уравнение идентифицируемо.
Раздел: Рефераты по экономико-математическому моделированию
Тип: контрольная работа Просмотров: 11246 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Шпаргалка: Множественная регрессия и корреляция (4438)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151188)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru